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Abstract: Models of Gauge-Higgs unification in extra dimensions offer a very elegant

playground where one can study electroweak symmetry breaking. The Higgs potential

is fully radiatively generated and the contribution of bulk fermions will induce a vacuum

expectation value. A generic problem is that the quartic scalar coupling is too low, resulting

in a Higgs VEV that is too close to the compactification scale, and a Higgs mass that is

too light. In this paper we show that it is possible to solve these problems in a minimal

scenario in flat space by cancellations in the Higgs potential between the contribution of

different bulk fermions. A crucial role is played by antiperiodic fermions: the cancellation

is not the result of a fine tuning, but rather dictated by the choice of representations and

parities of the fermions. We also show that introducing a relatively large representation

can help in achieving a sufficiently heavy top. In this case, the strong coupling scale is

lowered to a marginally acceptable value, and a more careful analysis of two loop effects

should decide if the theory remains under perturbative control.
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1. Introduction

The Standard Model (SM) of electroweak interactions has withstood every recent exper-

imental attempt at directly or indirectly detecting new physics. On the other hand, it is

widely believed that it is not the final theory but rather an effective theory valid up to a

cutoff scale. Ultimately one would like to be able to find a theory where the cutoff scale is

given by the Planck mass MPl ∼ 1019 GeV. The reason why the cutoff in the SM can not be

very high is that loop corrections to the Higgs mass are quadratically sensitive to the cutoff

of the theory. Thus new physics is expected to enter at a scale not too far from the weak

scale to shield the Higgs mass from this sensitivity to the physics at the Planck scale. This

is usually referred to as the (big) hierarchy problem. A qualitatively different tension arises

when one takes into account the precision measurements that suggest a light Higgs boson,

below 280 GeV: due to the hierarchy problem discussed above this would imply a low scale

for the new physics around 1 TeV. This limit comes mainly from the top loop contributions

to the Higgs mass, as the top Yukawa is the largest coupling to the Higgs. On the other

hand, if one includes higher dimensional operators (which would presumably be generated

in a theory beyond the SM) in the analysis of electroweak precisions observables [3], it

turns out that the scale suppressing such operators, that is the new physics scale, has to

be larger than 5 − 10 TeV. This factor of 5 − 10 mismatch is the little hierarchy problem:

it requires a few % fine tuning in the new physics contribution to the Higgs mass. Thus,

the precision measurements, mainly performed at LEP [1], are the main challenge for the

realization of realistic models of New Physics beyond the SM [2].

The most acknowledged paradigm addressing these problems is supersymmetry: due

to the presence of partners of any SM particle with different spin, the dangerous quadratic
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dependence on the cutoff is tamed to a mild logarithmic dependence. However, a natural

realization of this paradigm would require superpartners at the weak scale, more precisely

around the mass of the weak gauge bosons. The fact that superpartners have not been

discovered at LEP and the Tevatron has pushed up the viable scale of supersymmetry

breaking. In a minimal realization (the MSSM), this reintroduces the fine tuning problem,

especially in the stop mass term which is responsible both for EWSB and the taming of

the top divergences.

The Large Hadron Collider (LHC), which is expected to turn on in just two years, is

expected to shed some experimental light on the problem. This adds a great motivation

to look for alternative models that naturally protect the Higgs mass. Indeed a plethora

of new mechanisms have been proposed, among them gauge extensions of the MSSM [4],

Little Higgses [5], fat Higgses [6], and many more. The recent realization [7] that extra

dimensions could play a role in low energy physics and are not necessarily only relevant

at the Planck scale, has opened a Pandora box of new possibilities. An incomplete list of

such models (relevant to electroweak symmetry breaking) includes the Randall-Sundrum

model [8], extra dimensional supersymmetry [9], composite Higgs in warped space [10, 11],

and Higgsless models [12].

A very attractive idea utilizing extra dimensions is called Gauge-Higgs unification, and

was first discussed in [13], and then developed by several authors both in 5 [14 – 16] and

6 dimensions [17 – 20]. In a nutshell, the idea is to identify the Higgs as the component

along the extra dimensions of a gauge field. The residual gauge invariance after the orbifold

breaking will impose a shift symmetry on the Higgs. The potential yielding electroweak

symmetry breaking is then radiatively generated and gauge invariance itself, embedded

in the extra dimensional background, ensures the insensitivity of the Higgs mass and the

electroweak scale on the cutoff. In 6D, however, possible tadpoles can be generated on the

orbifold fixed points [18, 20], reintroducing the cutoff dependence on the Higgs mass. While

this mechanism offers great simplicity and elegance, any effort to build a realistic model up

to date has been unfruitful. The main problems are the lightness of the Higgs and of the

top quark. Regarding the top, the Yukawas are generated via the gauge coupling itself, so it

is generically hard to engineer a Yukawa of order 1 from a small gauge coupling. Regarding

the Higgs mass, it turns out to be too small, below the value currently excluded by LEP,

because the quartic scalar interaction term is generated at one loop. Since the entire

potential (mass and quartic) is loop generated, the potential will also generically prefer

large values of the Higgs vacuum expectation value (VEV) relative to the compactification

scale so that the scale of new physics stays dangerously low. It is interesting to note that

a deconstructed version of this mechanism [21] led to the idea of Little Higgs models. The

symmetry protecting the Higgs mass is now a discrete shift symmetry, and the construction

is much less constrained by the absence of 5D Lorentz invariance. In Little Higgs models,

this idea has been pushed further: in this case the symmetry is protecting the Higgs mass

at one loop, but allows a quartic coupling at tree level [5].

The simplest possibility is to extend the weak gauge symmetry to SU(3)w [17], the

smallest group that allows to embed the Higgs in an adjoint representation together with

the SM gauge bosons. The SU(3)w is broken to the SM gauge group SU(2)L×U(1)Y by an
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orbifold projection. Such model, in one flat extra dimension, has been extensively studied

in [15]: in their numerical study the authors indeed found typical values mH < 20 GeV

and mt < 100 GeV. An interesting possibility to improve the situation is to warp the

extra dimension [11]: this allows to raise both the Higgs and top mass. However, in

such background, the Higgs VEV distorts the W and Z wave functions and generates

corrections to the couplings with fermions. Thus, one has to worry about tree level oblique

corrections, in particular protecting the ρ parameter requires the inclusion of a custodial

SU(2)R symmetry in the bulk [22]. Another crucial parameter is the coupling of the left-

handed bottom to the Z: forcing a large top mass will induce large corrections, due to the

fact that the bl is part of the same weak doublet as the top [23]. From this point of view,

the flat case offers a great advantage. Indeed, the flatness of the Higgs VEV does not

induce any tree level mixing between the KK modes, due to the orthogonality of the wave

functions. The zero modes will also generically have flat wave functions, thus forbidding

couplings with one KK mode alone: this property is similar to the T-parity introduced

in Little Higgs models [24]. We stress here that the absence of tree level corrections is

guaranteed only if all localized terms on the orbifold fixed points are small. This is possible

in a model where the breaking of the gauge symmetry is achieved solely via the orbifold

projection and the light fermions are zero modes of bulk fields. However, in the model

we study, localized terms play an important phenomenological role: large mixings with

localized fermions are used to reproduce the light generations, and localized mass terms

are used to further break the gauge group. These will reintroduce some of the tree-level

corrections to EWPO’s. Nevertheless, the presence of such terms is model dependent and

not a generic consequence of the symmetry breaking mechanism and background geometry.

In this paper we will focus on a flat model, in particular the toy model analyzed

in [15].We show two mechanisms that allow to get a heavy top and a heavy Higgs mass in

a minimal scenario. The fermion masses are generated by the mixing of localized degrees

of freedom that couple to a massive bulk field [18]. A minimal model would require at

least one bulk field for each SM fermion. We have re-analyzed the spectrum of the top

quark tower, taking into account the effects of the localized mixings exactly. Our numerical

analysis confirms the results in [15]: the effective Yukawas are exponentially suppressed by

the bulk masses of the bulk fermions or by small localized mixings. However, in the limit

of vanishing bulk mass the light mode develops a mass of the order of the W mass. This

limit corresponds to the case when the SM top is mostly a bulk degree of freedom. An

enhancement factor can be added if one considers larger representations: as a drawback

adding large representations will also lower the scale where the theory enters a strong

coupling regime, endangering the stability of the calculation. We find that a relatively

small representation may explain a factor of two between the top and the W and still keep

the theory under control. However, a more careful analysis of this issue is necessary. In

order to get rid of unwanted extra light modes, one can either add localized degrees of

freedom on the brane and couple them with the zero modes via localized mass terms, or

twist the fermionic boundary conditions and then introduce the SM fermions on the brane.

The second problem is the Higgs mass. In [15], the Higgs is found to be too light,

however only the contribution of the top quark tower is taken into account in calculating
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the Higgs potential. The rationale behind this is the following: since all the other SM

fermions are much lighter than the top, one expects the corresponding bulk fermions to be

heavier in order to naturally generate the hierarchies in the fermion spectrum. However,

if one gives up this motivation and simply assumes that the hierarchies are generated by

smaller mixings, other bulk fermions, that couple to the bottom, tau or light generations,

can give a non-negligible contribution to the Higgs potential. We identify a set of scenarios

where these contributions show cancellations in the potential, achieving two main goals:

first of all the Higgs VEV in units of 1/R is much smaller, thus allowing the resonance scale

to be much heavier than the W mass, and the Higgs mass receives additional contributions

that push its value above the experimental bound. It is important to notice that these

cancellations are not to be considered a fine tuning. Indeed, they are generated by the

contribution of different representations of the SU(3)w group and will not be spoiled by

a continuous variation of the parameters involved. Moreover, it is important for us that

the model is still minimal, in the sense that we do not add any bulk “spectator” field

with the sole purpose of raising the Higgs mass: each fermion we take into account has to

be introduced in the theory anyway in order to generate the masses of light fermions. An

important ingredient for the model to work is the introduction of antiperiodic bulk fermions

(twisted boundary conditions): the twisting flips the sign of the fermion contribution to

the Higgs mass [16], that in 4D is always negative, and this flipped sign is the main source

for the cancellations in the potential. However, in a fully realistic theory there will still be

contributions to the ρ parameter and to the coupling of the Z boson with the bottom quark.

∆ρ is due to the fact that we need to introduce an extra U(1) to obtain the correct sin2 θw

and to get the correct quark hypercharges. Once the extra U(1) is broken by boundary

terms, the Z will become a mixture of the A3 and A8 fields from SU(3)w and the extra

U(1) field, with a non-flat wave function. This distortion also generates a correction to Zbb̄.

Another correction to the couplings of the bottom arises due to the presence of triplets in

the representation containing the left-handed top (and bottom). The orbifold projection

will leave zero modes for those triplets, which have to be removed via localized mixing

terms. These triplet zero modes will couple to the quark doublet via the Higgs VEV. In

the end, a fine tuning comparable to that of the MSSM (few % level) will still be required.

The paper is organized as follows: after a brief introduction of the toy model in sec-

tion 2, we exhaustively discuss all the possible ways of generating fermion masses in sec-

tion 3. In section 4 we illustrate how one can avoid a light Higgs and large VEV in the

toy model of [15]. Finally, in section 5 we analyze how to generate a realistic top mass

using a large representation, and how the same mechanism in the previous section can

raise the Higgs mass. Finally we briefly discuss the bounds from precision measurements

in section 6, before the conclusions and outlook in section 7.

2. A toy SU(3)w model

In this section we will briefly review the toy model studied in [15]. The gauge group is

SU(3)c×SU(3)w on an S1/Z2 orbifold: the enhanced weak symmetry allows the unification

of the SM gauge bosons and the Higgs doublet. In fact, the adjoint of SU(3) decomposes
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into (3, 0) + (2, 1/2) + (2, -1/2) + (1, 0). The orbifold breaks SU(3)w to SU(2)L×U(1)w
via the projection matrix:

P =







−1 0 0

0 −1 0

0 0 1






, (2.1)

where the gauge fields transform as Aµ → PAµP † and A5 → −PA5P
†. With this choice,

only the SM gauge fields have a zero mode. In the scalar sector, the zero mode is a single

complex SU(2) doublet with the correct quantum numbers to play the role of a Higgs:

A5 =
1√
2

(

− H5

H†
5 −

)

. (2.2)

Note also that all the massive modes in A5 are eaten by the massive KK modes of the gauge

bosons, and play the role of the longitudinal degrees of freedom, like in the usual Higgs

mechanism: the only physical scalar left in the spectrum is the zero mode. The linearized

gauge transformations in the bulk are:

Aµ → Aµ + ∂µλ(x, x5) + i[λ(x, x5), Aµ] ,

A5 → A5 + ∂5λ(x, x5) + i[λ(x, x5), A5] .
(2.3)

On the branes, λ = 0 for the broken generators, however the gauge transformation will

still impose on A5 a shift coming from ∂5λ. This is enough to forbid a tree level potential

for A5, also on the fixed points, and only loop contributions will generate a potential for

the Higgs, that will be non-local from the 5D point of view, and finite. We will assume

for the moment that the potential does induce a VEV for the Higgs: we can use SU(2)

transformations to align the VEV, analogously to the SM case, and parametrize it

〈H5〉 =
√

2

(

0

α/R

)

. (2.4)

It is now straightforward to compute the spectrum of the gauge bosons: we find

MWn =
n + α

R
, MZn =

n + 2α

R
, Mγn =

n

R
, (2.5)

where n ∈ Z, and we want to identify the lightest state in each tower with the SM gauge

bosons, the photon, the W and the Z. Let us first point out that the spectrum is invariant

if we shift α by an integer, and if we change its sign. In other words, the physical range

for α is [0, 1/2] and all other vacua outside this range are equivalent, as the radiatively

induced potential will respect the same symmetries. Another important feature is that

MZ turns out to be twice the W mass: this is a consequence of the gauge group SU(3)

that predicts θW = π/3. One possible way to fix it is to add localized gauge kinetic terms:

SU(3) being broken on the boundaries, such terms can be different for the SU(2) and U(1)

and, if large enough, can dominate and fix the correct value of sin θW . However, this

scenario is equivalent to a warped extra dimension: integrating out a slice of the warped

space near the Planck brane, where the warping is small, will mimic the localized kinetic
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terms, while the remaining space will be almost flat. We will not pursue this direction,

as it has been already discussed in the literature [11]. Moreover, it suffers from tree

level corrections to the precision observables [23] from the mixing of the zero modes with

the KK modes as a consequence of the non-flat profile of the Higgs. Another possibility

is to extend the gauge group with an extra U(1)X . In this case, if the bulk fermions

are charged, only the combination of the two U(1)’s proportional to the hypercharge is

anomaly free, and the orthogonal gauge boson will develop a mass [17]. Alternatively, one

can use boundary conditions to break U(1)w×U(1)X → U(1)Y , for instance by twisting

the BC on one of the two branes, such that no zero mode is left in the scalar sector. In

both cases, the breaking is due to localized terms: as a result the wave function of the Z is

distorted, introducing corrections to the ρ parameter and Zbb̄. Finally, it might be possible

to achieve the correct weak mixing angle starting from a different gauge group and using

more complicated orbifold projections, thus without introducing distortions in the zero

mode wave functions: this possibility has not been exaustively explored yet. Nevertheless,

the details of this mechanism will not affect the main results of this paper, so in the

following we will assume the presence of the extra U(1).

2.1 Bulk fermions

The next problem is how to generate a mass for the SM matter fields. If we added bulk

fermions, with chiral zero modes thanks to the orbifold projection, the Higgs VEV would

generate a spectrum similar to that in (2.5): all the light modes would have masses larger

than the W mass, where the exact relation depends on group theory factors arising from

the fermion representations. Indeed, gauge invariance forces the Higgs to couple to bulk

fields and with strength determined by the 5D gauge coupling g5. There are two possible

solutions: one is to include odd masses for these fermions, that will localize the zero modes

towards the two fixed points. As modes with different chirality will be localized towards

different points, this mechanism will reduce the overlaps between the wave functions, and

generate hierarchies between the various Yukawa couplings. Another possibility, adopted

in [18, 15] is to localize the SM fermions on the fixed points, and then mix them with

massive bulk fields that will induce an effective Yukawa coupling a la Froggatt-Nielsen. In

the following we will focus on the latter possibility.

The most general conditions on a bulk fermion in a representation R are:

ψ(−y) = ηR(P )ψ(y) , ψ(2πR + y) = η′ψ(y) . (2.6)

The presence of an extra parity η′ only means that we will allow for antiperiodic fermions:

let us first discuss the case of periodic fermions, the case considered in detail in [15]. In

this case, the orbifold projection will leave chiral bulk zero modes: in order to get rid

of them, for each fermion Ψ, we add a second bulk fermion Ψ̃ with the same quantum

numbers but opposite parity, so that we can write down an invariant bulk mass M for

them. Now, the localized fermions can mix with the even components that do not have

vanishing wave functions on the fixed points. In table 1, we listed the bulk fields, with

their parities η and SU(3)c×SU(2)L×U(1)Y decomposition, that contain components with
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SM particle SU(3)c×SU(3)w η SU(3)c×SU(2)L×U(1)Y
down (3,3) + (3,1,-1/3) + (3,2,1/6)

up (3, 6̄) + (3,1,2/3) + (3,2,1/6) + (3,3,-1/3)

lepton (1,10) + (1,1,-1) + (1,2,-1/2) + (1,3,0) + (1,4,1/2)

Table 1: List of the bulk fermions that mix with the localized SM fermions.

the same quantum numbers as the SM fields. Of course, in the presence of an extra U(1)X ,

the extra charge can be adjusted to fit the hypercharge, and the choice of representations

is much less constrained.

Antiperiodic fermions are equivalent to fermions with different parities on the two fixed

points, that we will call “twisted”, there is no massless zero mode and the KK masses are

given by mn = (n + 1/2)/R. In general, we can also add a partner Ψ̃ and a bulk mass,

as in the previous case: such term could be of phenomenological interest, as we will see

later. Such twisted fermions can also account for the SM field masses. Indeed, there will

be components that do not vanish on the fixed points and can mix with localized fields.

2.2 Higgs potential from the bulk fields

We now discuss the contribution to the Higgs potential from these bulk fields. Their

spectrum, as a function of the Higgs VEV, generically takes the form:

m2
n =

(n + β)2

R2
, n ∈ Z , (2.7)

where the parameter β is proportional to the Higgs VEV α via an integer, that is determined

by the representation of the field. We can use the Higgs-dependent spectrum to compute

the full one-loop potential, using the Coleman-Weinberg formula: after summing over the

KK modes [17], we find

Veff(β) =
∓1

32π2

1

(πR)4
F(β) , (2.8)

where the signs stand for bosons/fermions and

F(β) =
3

2

∞
∑

n=1

cos(2πβn)

n5
=

3

2
Re

[

Li5(e
2πβi)

]

, (2.9)

where Lik is the polylogarithmic function of order k.

In the presence of a bulk mass, as for example for the fermions described above, the

spectrum is shifted to

m2
n = M2 +

(n + β)2

R2
, n ∈ Z , (2.10)

and the effective potential becomes

Fκ(β) =
3

2

∞
∑

n=1

e−κn cos(2πβn)

n3

(

κ2

3
+

κ

n
+

1

n2

)

=
3

2
Re

[

κ2

3
Li3(e

−κ+2πβi) + κLi4(e
−κ+2πβi) + Li5(e

−κ+2πβi)

]

, (2.11)
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bulk field multiplicity

gauge (adj.) −3 2F(α) + F(2α)

down (3) 3 × 8 Fκd
(α)

up (6) 3 × 8 Fκu
(α) + Fκu

(2α)

lepton (10) 8 2Fκl
(α) + Fκl

(2α) + Fκl
(3α)

Table 2: Contribution to the Higgs potential from the bulk fields in the theory. The multiplicity

counts the spin and color factors. Recall that for each SM fermion, there are 2 4-component bulk

fermions.

where κ = 2πMR. In the limit of vanishing bulk mass κ → 0 we obtain the previous result,

on the other hand for large κ the contribution to the effective potential is exponentially

suppressed. As a consequence, the bulk fields with large bulk mass will contribute the less

to the potential. Another important feature is that the most important term in the series

is a cos 2πβ: the minimum of such term is in 0 for bosons and in β = 1/2 for fermions.

Thus, the value of the integers relating β to α will roughly speaking fix the value of the

minimum.

If the fermion is antiperiodic or “twisted”, the spectrum is:

m2
n = M2 +

(n + 1/2 + β)2

R2
, n ∈ Z . (2.12)

The contribution to the effective potential is given by the previous formulas, with β →
β + 1/2. As

cos(2πn(β + 1/2)) = (−1)n cos(2πnβ) ,

the twisted parity approximately flips the overall sign of the contribution. In this way, we

can get positive contributions to the Higgs mass arising from fermions.

The contribution of each bulk field is now easily computed if we decompose the SU(3)w
multiplets and compute the couplings to the Higgs. The results are summarized in table 2.

3. Fermion masses

In this section we will discuss how the SM fermions develop a mass via the localized mixings.

The bulk fields in table 1 contain a component with the same quantum numbers as the

SM fields, which thus they can mix with at the fixed points. The localized Lagrangians

generically are

Lloc =

[

−iQ̄Lσ̄µ∂µQL +
εL√
πR

ψdQL + h.c.

]

δ(y − yL)+

[

−iqRσµ∂µq̄R +
εR√
πR

qRχs + h.c.

]

δ(y − yR) , (3.1)

where ψd and χs are the doublet and singlet components of the bulk fermion and the mixing

parameters ε are dimensionless (the factor of πR has been chosen for future convenience).

A similar Lagrangian needs to be added for all the SM quarks and leptons. The two points
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yL and yR can be either one of the fixed points: for each choice of twisted or untwisted

periodicity, there is a unique component on both branes that can be identified with ψd and

χs. At the end of the day, we will have four inequivalent possibilities, depending on the

twisting and if the mixings are on the same brane or on different brane. In the following

we will discuss all the cases, pointing out some differences.

In order to find how the spectrum is affected by the localized terms, we can as usual

solve the bulk equations of motion in the bulk, and convert the localized terms into bound-

ary conditions on the bulk fields [26]. Following this procedure, it is possible to write a

master equation whose zeros are the mass eigenstates. This procedure takes the effect

of the localized mixings into account exactly. For small mixings, the light mode mass is

proportional to the ε’s, so it is always possible to reproduce masses much smaller than the

Higgs VEV. The challenge is given by the top mass: the coupling of the Higgs is generated

via gauge interactions, so it is not easy to achieve a Yukawa of order one from a much

smaller gauge coupling.

In the following we will discuss the case of a fundamental for simplicity: in this case

there are no extra fields except a doublet and singlet that can be identified with the

SM fields. We will consider all the four possible cases with regards to the twisting and

localization of the mixings, and we will discuss some interesting limits for the light mass

eigenstate. For untwisted boundary conditions (η′ = 1), the master equations are:

Y3(w) = (cos w − cos(2πα))2 + 2
ε2
L + ε2

R

w
sin w (cos w − cos(2πα))

− 4ε2
Lε2

R

w2
·







(cos w + 1)
(

cos w − 1 + 2 w2

w2+κ2 sin2(πα)
)

different branes ,

1
2

(

cos 2w − 1 + 2 w2

w2+κ2 sin2(2πα)
)

same brane .
(3.2)

where w2 = (2πRm)2 − κ2, and κ = 2πRM . As expected the only difference between the

different branes and same brane cases is in the “interference” term. For twisted boundary

conditions (η′ = −1), the equation becomes:

Ỹ3(w) = (cos w + cos(2πα))2 + 2
ε2
L + ε2

R

w
sin w (cos w + cos(2πα))

− 4ε2
Lε2

R

w2
·







(cos w − 1)
(

cos w + 1 − 2 κ2

w2+κ2 sin2(πα)
)

different branes ,

1
2

(

cos 2w − 1 + 2 w2

w2+κ2 sin2(2πα)
)

same brane .
(3.3)

In the case of vanishing ε’s, eqs (3.2) and (3.3) simplify to

cos w ∓ cos(2πα) = 0 , (3.4)

where the signs refer to the untwisted/twisted case. The solutions are

m2
n = M2 +

{

(n+α)2

R2 untwisted ,
(n+1/2+α)2

R2 twisted ,
(3.5)

as we expect.
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We can solve eqs. (3.2) and (3.3) approximately in the limit of small Higgs VEV α

(and small fermion mass mR ¿ 1): this limit is useful to understand how the effective

Yukawa coupling depends on the parameters in the model. In the four different cases we

find that the ratio between the fermion mass and the W mass (α) is

untw. d.:
mq

mW
= εLεR

κ coth κ
2

√

(

2ε2
L cosh κ

2 + κ sinh κ
2

) (

2ε2
R cosh κ

2 + κ sinh κ
2

)

, (3.6)

untw. s.:
mq

mW
= εLεR

κ cosech κ
2

√

(

2ε2
L cosh κ

2 + κ sinh κ
2

) (

2ε2
R cosh κ

2 + κ sinh κ
2

)

, (3.7)

tw. d.:
mq

mW
= εLεR

κ tanh κ
2

√

(

2ε2
L sinh κ

2 + κ cosh κ
2

) (

2ε2
R sinh κ

2 + κ cosh κ
2

)

, (3.8)

tw. s.:
mq

mW
= εLεR

κ sech κ
2

√

(

2ε2
L sinh κ

2 + κ cosh κ
2

) (

2ε2
R sinh κ

2 + κ cosh κ
2

)

. (3.9)

It is interesting to study such results in different limits in the bulk mass κ. For large κ,

the bulk fermion twisting becomes irrelevant: the masses of the KK modes are dominated

by the bulk mass κ. We find a different limit depending on whether the localized masses

are on the same or opposite branes:

diff. branes → 4εLεR
√

(2ε2
L + κ)(2ε2

R + κ)

κ

2
e−κ/2 , (3.10)

same brane → 4εLεR
√

(2ε2
L + κ)(2ε2

R + κ)
κ e−κ . (3.11)

In both cases the effective Yukawa is exponentially suppressed: the two different powers

are easily understood. If the interactions are on different branes, in order to feel both the

mixings, the massive fermion has to propagate from one brane to the other, thus developing

a suppression of order exp(−πRM). In the case of same brane localization, the fermion has

to propagate to the other brane and back, therefore accumulating a double suppression.

From these limits, it is clear that we can fit the light fermions very easily, either with a

large bulk mass or with small localized mixings.

The limit for small κ is more interesting. In the untwisted case, we find that mq → mW .

The rationale is again simple: when the bulk mass vanishes, the two bulk fermions decouple.

The localized fields mix with one of the two bulk fermions, Ψ, giving a mass to the zero

modes of order ε. The other fermion Ψ̃, on the other hand, has a light mode whose mass

is exactly α/R, as discussed in section 2. We can confirm these result if we expand for

small κ, without any assumptions on the Higgs VEV. The result is that for both same and

different brane we find a light mode with mass mqRπ ∼ sin πα, and a mode:

diff. branes → mqπR =
εLεR

√

(1 + ε2
L)(1 + ε2

R) − cos2 πα
, (3.12)
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κ

Figure 1: Plot of the ratio mq/mW as a function of the bulk mass κ with fixed mixing parameters

εL = 5 = εR. The four curves correspond to untwisted boundary conditions and mixings on different

branes (d) or on the same one (s), and to twisted boundary conditions (t).

same brane → mqπR =
εLεR cos πα

√

(1 + ε2
L)(1 + ε2

R) − cos2 πα
. (3.13)

In the twisted case the situation is more complicated: in the case of mixings on the same

brane, the bulk fields that enter the mixing terms are coming from the same bulk field

Ψ. The other bulk field decouples, while the localized zero modes develop a mass via the

massive modes in Ψ. Indeed, we find only one light mode, with mass:

mqπR =
εLεR sin πα

√

(1 + ε2
L)(1 + ε2

R) − sin2 πα
→ εLεR

√

(1 + ε2
L)(1 + ε2

R)
α , (3.14)

where the limit for small α agrees with the limit of eq. (3.9). Even if we do not have a bulk

mass, we can achieve again small values with small mixings. In the case of twisted bulk

fermions on different brane, expanding eq. (3.8), we find:

mq

mW
=

εLεR
√

(1 + ε2
L)(1 + ε2

R)

κ

2
. (3.15)

The mass vanishes when κ → 0: the reason is that the localized fermions couple to different

bulk fields, so they will not get a mass in the absence of a bulk mass.

From this analysis it is clear that the effective Yukawa coupling cannot be larger than

the gauge coupling. Moreover, the only way to avoid an exponential suppression is to have

a vanishing bulk mass. In other words, we need bulk zero modes to get directly their mass

via the Higgs mechanism. If we consider larger representations, the only novelty is the

presence of more states that will mix via the Higgs and complicate the equation. However

the same qualitative behavior appears. Another interesting feature is the appearance of

group theory factors that may increase the effective Yukawa coupling. We will discuss in
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a later section if it is possible to use large representations to enhance the top mass. In the

rest of this section, we will focus our interest on the Higgs mass, thus the next step is to

compute the one loop potential in presence of localized mixings. Regarding the top mass,

following [15], for the moment we will assume it is generated by a symmetric representation.

In this case we only get a group theory factor enhancement of
√

2: numerically the top

mass will be lower that 100 GeV.

Since the spectrum of KK modes is largely modified in the presence of localized mixings,

we also expect large corrections in the Higgs potential. If the mixings are small, as it may

be for light fermions, we can neglect such effect and only consider the bulk contribution

computed in the previous section, however a new calculation of the potential is necessary

for the top quark. Following Goldberger and Rothstein in [25], we can relate the Coleman-

Weinberg potential to the master equation in eqs. (3.2)-(3.3). In general, if Y(m) = 0

determines the spectrum, the contribution of the states in such a spectrum is given by:

Veff =
1

2

∫ ∞

0

d4p

(2π)4
lnY(ip) . (3.16)

In our case, the contribution can be written in the form of eq. (2.8), with:

Fε(κ, α) =
1

8

∫ ∞

κ
dζζ(ζ2 − κ2) ln

Y(iζ)

K(ζ)
, (3.17)

where the function K has been added to regularize the divergence of the integral for large

ζ. This function is somewhat arbitrary, but will not affect the Higgs physics as long as it

does not depend on the Higgs itself: it will simply regularize the divergent contribution to

the vacuum energy. For instance, in the case of eq. (3.2) and (3.3),

K = cosh2 ζ

(

1 +
2ε2

L

ζ

)(

1 +
2ε2

R

ζ

)

, (3.18)

will ensure the exponential convergence of the integral.

4. Higgs mass

In this section we will finally study the dynamical determination of the Higgs VEV via the

radiative potential. The W mass is given by:

mW =
α

R
. (4.1)

The value of the Higgs VEV α determines the ratio between the W mass and the scale of

the gauge boson resonances 1/R. Thus, the smaller α, the heavier the resonances and the

scale of new physics.

The Higgs mass is also given by the radiative potential after we expand around the

VEV

α = αmin +
hR

2
, (4.2)
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through the formula

m2
h =

g2
4

4
R2V ′′(αmin) =

g2
4

128π6

1

R2

∑

F ′′(αmin) . (4.3)

For the moment we will focus on the model in [15], and only consider the bulk fermions in

table 2. The gauge fields alone will preserve the gauge symmetries and their potential will

keep α = 0. On the other hand, the fermion content plays a very important role, as they

will generate a non trivial minimum in the potential, thus driving EWSB. It is particularly

relevant that the larger the representation the more minima we have, in particular at small

values of α. For example, a fundamental 3 will have a minimum at α = 1/2: this is a

bad value, where the Z is massless so there is an extra unwanted unbroken U(1). The

symmetric 6 will have a local minimum at α ∼ 1/4, and so on. Another interesting point

is that, twisting the boundary conditions for the fermions, we can reverse the sign of the

potential. This feature is useful if we want to move the minimum towards small values. The

game we want to play here is to combine the contribution from different bulk fermions in

table 1, the ones that are responsible for the SM fermion masses, and obtain cancellations

that ensure a small value of the minimum and a heavy Higgs mass [11].

In [15] the authors considered a well motivated scenario: the mixing terms are assumed

to be all of the same order, and the hierarchy in the SM fermion masses is generated by

different bulk masses. As a consequence, the only bulk fermion giving a sizable contribution

to the Higgs potential is the top. As already mentioned, this leads to a minimum at large

values of α and small Higgs masses. We typically find α ∼ 0.3 and mh ∼ 0.2 ÷ 0.3mW ,

confirming the results in [15]. Another drawback of a large VEV is that it predicts a

low scale for the new physics, 1/R ∼ 3 ÷ 5mW = 250 ÷ 400 GeV. It is interesting to

note that the only way to get a realistic value for α with only periodic fermions is to

use a huge representation [15] that will certainly spoil the perturbative stability of the

theory.

In order to lower the value of αmin and enhance the Higgs mass, we consider a different

scenario: giving up the motivation to explain the fermion mass hierarchies with bulk masses,

we assume that light fermions are suppressed by small mixings. In this case the bulk

fermions responsible for their masses can contribute to the Higgs potential. Moreover, we

can also twist the boundary conditions for some of them, in order to achieve cancellations

in the potential. The potential will now depend on a throng of new parameters: we will

concentrate on a particularly successful example. We assume that the top 6̄ has large

mixing terms, say εL = εR = 3, and κt ∼ 1. With these numbers, we have a top around

1.3mW ∼ 100 GeV. For the bottom we add a twisted 3 with κb = 0. For the tau, we

include a 10 with κτ = 1. Finally, we add twisted fermions for the light generations

(namely a 3, a 6̄ and a 10), with a common bulk mass κl for simplicity, that we keep as a

free parameter. In figure 2, we plotted the single contributions to the potential for κl = 3.

The role played by the individual terms is quite clear: the top and tau contributions will

drive EWSB. On the other hand, the twisted fermions, those introduced for the bottom

and light generations, tend to move the minimum back to α = 0: the cancellation between

these two terms allows us to get a low minimum.
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Veff
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gauge

Total

bottom + light gen.

α

Figure 2: Plot of the Higgs potential (in arbitrary units) from the gauge bosons (dashed-red),

tau and top (blue), twisted fermions (dashed-green), and the total (thick black), for one light

generation with κl = 3. The other parameters are like described in the text.

κ l2.5 3 3.5 4 4.5 5

0.025

0.05
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2 light gen.

1 light gen.

α H
m

κ l2.5 3 3.5 4 4.5 5

100
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200

250

300

2 light gen.

1 light gen.
LEP-II

Figure 3: Plots of the minimum of the Higgs potential α (left) and the Higgs mass (right), as a

function of κl.

In figure 3 we show the Higgs mass and the Higgs VEV as a function of κl in the

case of one or two light generations taken into account. It is important to notice that

for small values of κl, the contribution of the twisted fermions will dominate and force

the Higgs in the symmetric phase. In other words, there is a continuous transition to

the value α = 0: however, when α is too small the dependence on the parameter κl is

very strong, signaling a fine tuning in the potential. Values of α & 0.1 can be achieved

without fine tuning as the cancellation only depends on the representations included in

the calculation. We have checked that the results are also insensitive to variations of

the other continuous parameters. The LEP bound on the Higgs mass pushes α . 0.05,

in a region that shows a mild fine tuning. We will be more quantitative in the next

section, where we analyze a more realistic scenario including the top mass. Moreover, in

this region of the parameter space, the scale of the KK resonances is 1/R & 20mW ∼
2 TeV.
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5. Top mass from large representations of SU(3)

The model presented in the last sections seems to have a realistic spectrum, except for

the top that is too light. The main reason is that the Yukawa is generated by the gauge

interactions themselves, so the fermion masses have an upper bound

mq ≤ k mW , (5.1)

where the bound is saturated when the bulk mass vanishes, or in other words the fermion is

a bulk field zero mode, and the proportionality factor k depends on the representation the

top is embedded in. In order to fit the top mass, one should include in the theory a large

representation. But how large does it have to be in order to generate a realistic mass? It

turns out that the number k is given by the square root of the rank of the representation [27],

i.e. the number of indices. So, the smallest useful representation would be a tensor with 4

indices. It would lead to the nice prediction that at tree level mt = 2mW , then corrections

from QCD loops could account for the extra enhancement. The first worry about the use

of large reps is that the cutoff of the theory may enter a strong coupling regime at low

scales, due to large group theory factors in the fermion loops. We will comment on this

issue later, and for the moment just assume that the theory is under perturbative control.

The representations of rank 4 of SU(3)w, with their decomposition under SU(2)×U(1),

are:

(1̄5)−2/3 → (1, 2/3) + (2, 1/6) + (3,−1/3) + (4,−5/6) + (5,−4/3) ,

(2̄4)0 → (1, 2/3) + (2, 1/6) + (2, 7/6) + (3,−1/3) + (3, 2/3) + (4,−5/6)

+(4, 1/6) + (5,−1/3) ,

(27)2/3 → (1, 2/3) + (2, 1/6) + (2, 7/6) + (3,−1/3) + (3, 2/3) + (3, 5/3)

+(4,−5/6) + (4, 1/6) + (5, 2/3) ,

(5.2)

where we have added a charge under the extra U(1)X in order to fix the hypercharges. In

the following we will use the smallest of these representations, the symmetric 1̄5. In order to

fully exploit the factor of two, we need the top to be a bulk fermion zero mode. So, we only

add one bulk field, and as usual use the orbifold parity to obtain a chiral spectrum of zero

modes. The orbifold projection will leave unwanted zero modes in the large representations

of SU(2)L as well: in order to get rid of them we add localized fermions, and a mass like

in eq. (3.1). For simplicity, we will assume in the following that all three brane localized

mass parameters are equal (and denote them by ε).

In order to determine if the spectrum is realistic, we need again to minimize the

Higgs potential. We analyze a minimal scenario, where only the third generation fermions

contribute. The masses for bottom and tau are generated in the usual way, with localized

degrees of freedom that feel EWSB via the mixing to massive bulk fields. The simplest

choice is to add two fermions with twisted boundary condition: they will both give them

small masses and induce cancellations in the Higgs potential as in the previous section. Due

to the presence of the extra U(1)X we can always adjust the overall hypercharge, so we are

free to use any representation: however, we will concentrate on small representations, like

the 3, 6 and 10 in table 1, so that they will not worsen the problem with the low strong
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Figure 4: Plot of the Higgs potential (in arbitrary units) from the gauge bosons (red-dashed), top

(blue), bottom (3) and tau (10) (green-dashed), and the total (thick black), for ε = 1.25.
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Figure 5: Top left: Higgs VEV α as a function of the localized masses ε. Top right: fine tuning

as a function of α. The vertical lines are bounds on α coming from corrections to the Zbb̄ vertex,

discussed in section 6. Bottom left: Higgs mass as a function of α. The horizontal line is the LEP

bound of 115GeV. Bottom right: top and first massive mode (dashed) masses as function of α. In

all the plots, we show the results for model a (blue) and model b (red).
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coupling scale. For simplicity we will present results from two cases, that summarize the

qualitative properties of this scenario:

bottom tau

model a (3, 3)0 (1, 10)0
model b (3, 6)1/3 (1, 3)−2/3

where we have eventually assigned U(1)X charges to fix the hypercharge of the doublet

and singlet components. A typical shape for the Higgs potential is given in figure 4, for

model a: EWSB is again induced by the contribution of the top (1̄5), while the twisted

fermions push the VEV towards small values. The only free parameter in this case is ε:

in the top-left panel of figure 5 we show the value of the Higgs VEV as a function of ε in

the two cases. You can see that EW symmetry is broken for natural values of ε ∼ 1. For

large localized masses, ε & 1.5, there is no EWSB. What happens is the following: the zero

modes from the unwanted states are removed, and this is equivalent to twisted boundary

conditions for such components of the bulk fermion. The spectrum of the (1̄5) in this limit

is equivalent to a twisted fermion with large mixing with a localized doublet and singlet.

However, the induced potential will resemble the one of a twisted bulk fermion as well,

thus it will not drive EWSB. For this reason we did not consider this possibility. In the

plot, we also see that the sensitivity of the minimum to ε becomes large when it approaches

the EW preserving values. This signals that in that region a parametric fine tuning is at

work in the potential. A simple way to quantify the amount of fine tuning f is via the

logarithmic derivative:

f =
d log α(ε)

d log ε
. (5.3)

which we plotted in the top-right panel of figure 5. Values of α & 0.05 require a fine tuning

milder than 10%: this shows that we can naturally obtain values of 1/R . 2 TeV.

In the bottom-left panel of figure 5, we show the mass of the Higgs as a function of α in

the two cases. In model a, the LEP bound of 115 GeV requires that α . 0.06: this means

that in order to push the Higgs mass above the direct bound, we need to allow a moderate

fine tuning in the potential. On the other hand, in model b no such fine tuning is needed:

the reason is that the colored bulk fermion is in a larger representation, so it will enhance

the loop induced quartic term. In general, mh ∼ 120÷150 GeV can be obtained, where the

precise value depends on the choice of bulk fermions. Finally, in the bottom-right panel we

plotted the top mass and the mass of the first massive mode. The results are the same in

the two cases, as they only depend on the bulk 1̄5. The top, in order to saturate the value

2mW , also prefers small values for α . 0.04, where the first massive mode is heavier than

∼ 500 GeV. These modes are bound by direct searches of a fourth generation of quarks to

be heavier than ∼ 200÷300 GeV (for a b′ the bound is ∼ 200 GeV [31], and we only expect

group theory factors coming from the different representations).

In table 3 we list some numerical results for different choices of the Higgs VEV. In the

next section, we will analyze possible constraints on the parameter space.
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α 1/R f mH mt m′
t

0.08 1 TeV
31%

42%

110

125
GeV

113

110
GeV

189

186
GeV

0.05 1.6 TeV
11%

14%

120

133
GeV

149

149
GeV

381

375
GeV

0.04 2 TeV
7%

9%

124

136
GeV

154

154
GeV

519

514
Gev

0.03 2.7 TeV
4%

5%

128

140
GeV

157

157
GeV

753

746
Gev

0.02 4 TeV
2%

2%

134

144
GeV

159

159
GeV

1224

1213
Gev

Table 3: Higgs (mH), top (mt) and first massive fermion (m′

t) masses for different values of the

Higgs VEV α, in the two models a (top row) and b (bottom row). We also list an estimate of the

fine tuning f required to obtain these minima.

6. Tree level corrections to electroweak precision observables

Models of EWSB in extra dimensions generically obtain tree level corrections to electroweak

precision observables, generated by the wave function overlap that affects the couplings

between particles. One possible source is the mixing between zero modes and KK modes

of gauge bosons or fermions, generated by the Higgs VEV responsible for EWSB. This is

the case in models of Gauge-Higgs unification in warped background [10, 23]. In a flat

background, the flatness of the W and Z wave functions and of the Higgs profile ensures

the absence of such corrections. The reason behind this is that the Higgs VEV does not

mix the zero modes with the KK resonances, thanks to the orthogonality of their wave

functions. The KK modes will generate non vanishing corrections at loop level, but we

expect them to be small due to the heaviness of the scale of new physics. The only tree

level corrections in the flat case can be generated by the presence of exotic zero modes that

mix with the SM particles and pick up a mass via boundary terms.

A source of such deviations is the presence of large SU(2)L representations among the

bulk fermions needed to generate masses for the SM fermions. Their eventual zero modes

will mix with the SM fermions via the Higgs VEV. For the light fermions such corrections

are highly suppressed by the masses, so they are negligible. The only worrisome coupling

is Zblb̄l, because the left handed component of the b is in the same multiplet as the top,

and is mixed with the large reps present in the 1̄5. The leading contribution will arise at

order α2. At this order, the only relevant representations are the ones linked to the quark

doublet by one Higgs insertion. Gauge invariance allows only couplings with triplets, with

hypercharge -1/3 or 2/3:

Y−1/3 QLH†3̄−1/3 + Y2/3 QLH3̄2/3 . (6.1)

We can compute the corrections to the vertex in two simple limits. If the localized mass is

small, then only the zero mode contributes, as the KK modes do not couple and the mixing
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induced by the localized term is small. In this limit, namely α ¿ ε ¿ 1, the contribution

of the two triplets is:

∆ =
δg

g
=

1

1 − 2
3 sin2 θW

(Y2
2/3 − Y2

−1/3)

(

mW

m3

)2

, (6.2)

where we have assumed that the two triplets have the same mass m3. In the limit of large

localized mass, the BCs of the triplets are effectively twisted: we can then compute the

contribution of a tower of twisted states. The contribution is the same as (6.2), with

1

m2
3

→ π2

3
R2 . (6.3)

In this limit, we will have a direct bound on R, or equivalently on α = mW R.

In the case of a 15, discussed in the previous section, there is only a triplet with

hypercharge Y = −1/3. The effective Yukawa is Y−1/3 =
√

3, and the correction is

∆ = − π2

1 − 2
3 sin2 θW

α2 ≈ −11α2 . (6.4)

The LEP experiments have constrained the deviation ∆ to be less than about one per-

cent [1]. A one percent deviation would imply the bound α < 0.03 or 1/R > 2.7 TeV (while

a 0.5% bound would imply α < 0.021 or 1/R > 3.9 TeV). This bound would start pushing

α in the region where a few percent fine tuning in the Higgs potential is required. It is

interesting to note that the triplet with hypercharge Y = 2/3 will give a positive contribu-

tion to ∆, thus relaxing the bound a little. This might be the case of larger representations

like the 24 or 27, see eq. (5.2), that contain both the triplets. Note that this correction is

present also in the case of a small representation, like the 6 considered in section 4: the

main difference is that the effective Yukawa Y−1/3 = 1 is smaller significantly reducing the

correction to Zbb̄.

Another source of deviations is the presence of the extra U(1)X needed to fit the weak

mixing angle. The orbifold projection breaks SU(3)w×U(1)X → SU(2)L×U(1)w×U(1)X ,

leaving an unwanted zero mode. The two U(1)’s can be broken to the hypercharge by a

localized Higgs mechanism or the presence of a (localized) anomaly. In both cases, the net

effect is the presence of a localized mass term for the combination

Xµ =
1

√

3g2 + g2
x

(√
3gA8

µ − gxAx
µ

)

, (6.5)

where A8 is the gauge boson of the U(1)w, while the orthogonal combination can be iden-

tified with the hypercharge gauge boson

Bµ =
1

√

3g2 + g2
x

(

gxA8
µ +

√
3gAx

µ

)

, (6.6)

with gauge coupling

g′ =

√
3gxg

√

3g2 + g2
x

. (6.7)
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At leading order, gx can be tuned to fit the SM coupling of the hypercharge. However, the

presence of the X boson will generate corrections to EWP observables. The localized mass

term is not protected by any symmetry, so it will generically be as large as the cutoff of

the theory: in this limit it will distort the wave functions of the KK modes and introduce

mixings of such massive states with the zero modes. If the light fermions are localized

on one fixed point (this is the same point where the anomaly is localized) they will not

couple to the X boson, thus there will not be any correction to the couplings at order α2:

the corrections will be of order α4, or induced by the mixing with the bulk fermions that

generate the mass, thus being of order (mfR)2α2. In both cases, they are safely small: this

implies that the S parameter is negligibly small. However, the X boson will also mix with

the Z, correcting its mass and generating a deviation in the ρ parameter (or alternatively

T ) given by

T =
4π

e2
∆ρ =

4π

e2

π2

3

3 − 4 sin2 θW

cos2 θW
α2 ≈ 1.2 · 103 α2. (6.8)

The experimental bound |T | . 0.3 poses a bound α < 0.015 (1/R > 5 TeV).

Another correction arises in the third generation sector: the bl is a bulk field, so it

couples directly to the X bosons. This coupling induces a correction to the coupling with

the Z given by

∆ = −2

3

[

3 − 4 sin2 θW

cos2 θW

1

6
− 3Qx

]

π2

1 − 2
3 sin2 θW

α2 , (6.9)

where the U(1)X charge of the 1̄5 is Qx = −2/3. This contribution is negative, and

when added to the correction from the triplet in eq. (6.4), it gives a bound α < 0.018 or

1/R > 4.5 TeV for |∆| < 1% (α < 0.013 or 1/R > 6 TeV for |∆| < 0.5%).

A potentially tight bound on the scale 1/R comes from the couplings of gauge reso-

nances of SU(2)L×U(1)w with the light fermions, that are localized on the orbifold fixed

points. Their coupling is generically
√

2 g, and they will induce four fermion operators

at tree level. The bound from precision electroweak observables [28, 2] would require

1/R > 4 TeV. An even tighter bound, around 7 TeV, would emerge from the analysis of

LEP2 data off the Z peak [29]. However, the light fermions do not play any active role in

the extra dimensional construction. Moreover, their effect on the little hierarchy problem

is negligible, due to the smallness of the Yukawa couplings. We can thus couple them to the

zero modes of the gauge bosons only, and add an explicit Yukawa with the Higgs without

spoiling the good features of the model. A consistent inclusion of them is postponed to

a UV completion of this model. The only fermions that play an active role in the model

under discussion are the top and bottom, and the constraints in this sector are milder. It

is anyway very easy to think of a scenario where four fermion operators involving top and

bottom are absent or suppressed. For instance, we can have a bulk 1̄5, that contains the

doublet QL and right handed top tR. After EWSB their wave functions remain flat and

the top gets its mass. The right handed bottom bR can also be identified with the zero

mode of a bulk singlet of SU(3)w. In order to give a mass to the bottom, we can introduce

a twisted bulk fermion (like the 6 in model b of section 5), and mix it with the bulk QL

and bR on the branes. For the bottom mass, it is enough to have mixings ε ∼ 0.1. The

flatness of the wave function of the bulk fields will forbid couplings of two zero modes with
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one KK mode, thus removing the four fermi operators at tree level. This mechanism is

precisely the extra dimensional version of the T parity advocated for Little Higgs models.

The presence of localized mixings will distort the wave functions, and generate very small

contributions suppressed by ε4 ∼ (mb/mW )2 ∼ 10−3. Note that the tau (the bulk 3) does

not play an important role in model b, so it can be treated as a light fermion.

Another effect of the large representations that we need to fit the top mass is that they

tend to lower the scale where the theory is strongly coupled, due to their large contributions

to loops. Naive dimensional analysis would suggest that the strong coupling scale is:

ΛstrongR ∼ 24π3R

g2
5

=
24π2

g2
∼ 103 , (6.10)

however this estimation does not take into account large group theory factors. For example,

a fermionic representation will contribute to a one loop result with a factor 4C(r), C(r)

being the Dynkin index of the representation. Notice that this same factor will enhance the

contribution to the Higgs mass term [30]. For the 15, the smallest representation needed to

generate a top mass, this would mean 4 · 3 · 35/2 ∼ 200, where we also took into account a

color factor of 3. Thus the naive strong scale is only few times the resonance scale 1/R: it

is then very important to verify if the results are stable under further radiative corrections.

For example, a calculation of the two loop corrections to the Higgs mass would be useful.

In the case of a 24, 27 or higher rank representations, the Dynkin index is much larger,

thus spoiling the predictive power of the theory.

7. Conclusions and outlook

We have shown that in a minimal model of Gauge-Higgs unification in a flat extra dimen-

sion, it is possible to accommodate a large Higgs mass and a heavy top. We do not add

extra fields just for the sake of the Higgs potential, but all the bulk fields are also used to

generate masses for the SM fields: in this sense we preserve minimality. Tree level correc-

tions to electroweak precision measurements generated by the mixing between KK modes

are avoided thanks to the flatness of the Higgs profile. The most serious bound on the

size of the extra dimension comes from the presence of zero modes that are not projected

away by the orbifold: extra zero modes in the large representation needed to fit the top

mass correct the Zbb̄ vertex, while the extra U(1)X needed to fit the weak mixing angle

introduces a ∆ρ (or T ). The top representation will also lower the scale where the theory

becomes strongly coupled to few × 1/R.

The model we analyzed consists of a SU(3)c×SU(3)w×U(1)X gauge group, where the

extra gauged U(1)X fixes the value of sin2 θW . The orbifold projection breaks SU(3)w →
SU(2)L×U(1)w, and U(1)X×U(1)w can be broken to U(1)Y either by twisted boundary

conditions or by a localized anomaly. The top mass is generated via gauge interaction,

so one is forced to introduce a 1̄5 of SU(3)w in order to generate an enhancement of the

fermion mass with respect to the W mass. Regarding the Higgs potential, introducing

twisted bulk fermions, that also give mass to the bottom and tau, one can lower the

value of the Higgs VEV and enhance the Higgs mass itself above the experimental bounds
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via cancellations in the potential. Part of these cancellations are due to the presence of

twisted fermions: they allow to achieve naturally, without fine tuning, values α & 0.05 and

mh ∼ 120÷ 140 GeV. In this region we estimate a fine tuning milder than 10 %. The scale

of new physics is also large, naturally around few TeV. The only tree level corrections to

the electroweak precision measurements are corrections to the Zbb̄ coupling, arising via the

mixing of the left-handed bottom with triplets of SU(2)L contained in the top bulk 1̄5, and

∆ρ induced by the extra U(1)X . They push the Higgs VEV in a region of the parameter

space where a few % fine tuning is needed, and require 1/R & 5 ÷ 6 TeV. This bound is

removed if the breaking of the gauge symmetry only comes from the orbifold projection,

as it may be possible if we consider different gauge groups and more complicated orbifold

projections. The deviation in Zbb̄ given by the large top representation alone would require

1/R & 4 TeV (at 0.5%).

Another consequence of the large top representation is that the theory becomes strongly

coupled at a relatively small scale, of order few × 1/R. This is a borderline situation, and

a calculation or estimation of the two loop effects is needed to decide if the calculation of

the Higgs mass that we presented in this paper is reliable. This scale is nevertheless large

enough, so that higher order operators generated by the non-perturbative physics will give

a negligible contribution to the precision measurements. Above the strong coupling scale,

the theory is no longer under perturbative control. If the gauge symmetry, responsible

for the protection of the Higgs mass, is not broken by non-perturbative effects, the Higgs

mass is protected up to the Planck scale, thus addressing the Big Hierarchy problem. The

only quantity that may be sensitive to the UV physics, and reintroduce a UV sensitivity

in the Higgs mass is the compactification scale 1/R. However, we can imagine to add a

stabilization mechanism [33], that only couples to the gauge sector via gravitational inter-

actions, thus without spoiling the stability of the Higgs mass. Moreover, this stabilization

mechanism will induce small distortions of the background and small 5D Lorentz violating

effects in the SM sector.

Note added. While this work was completed, we became aware of a related work by

G. Panico, M. Serone and A. Wulzer [32], where the authors also address the top and

Higgs mass problem in this context. The main difference between the two models is that

they enhance the top mass via large explicit violation of 5 dimensional Lorentz invariance

in the bulk, without the introduction of large representations.
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